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Formula for A

* Proof: ACT = det(A)I,
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(Exercise 82, P221)




0

det:(A)_

i1 A1n]C11) *° Cn1] [det(A)
Un1 Unnll IC1n| " Cnn. 0
a11 Ain
det . . — a11C11 + alzclz + ce + alncln
a?’ll ann
ann
P | = Ap1C11 T AppCip + o+ AppCin
a




e
Cramer’s Rule [ " ]

Cin " Cnn
A1 = ! cT Ax =b x=A"1h = ! }'Tb
det(A) det(A)
1

X1 = det(A) (c11b1 + c21b2 + - + cpiby) X = det(B;)

det(B;) det(A)

B, = with column 1 replaced by b det(B;)

Xy =
~ ~N det(A)

n-1
I3 Columns
of A

- _ _ det(B))
Bj = with column j replaced by b Xj = det(4)




